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Quasi-Static Image Method Applied
to Bi-Isotropic Microstrip Geometry

Pidivi K. Koivisto and Johan C.-E. Sten

Abstract— A generalization of the partial image method, ap-
plicable for static planar-layered problems, is used to form
Green’s functions for the layered structure involving bi-isotropic
medium. The results are applied for the analysis of a microstrip
transmission line assumed to support the quasi-TEM mode: The
capacitance and inductance per unit length are calculated to
determine the propagation factor and impedance for the structure
composed of a conducting strip attached to a bi-isotropic slab
with conducting backing.

Index Terms—Bi-isotropic medium, image method, quasi-static
approximation.

I. INTRODUCTION

i-ISOTROPIC (BI) medium has attracted a growing in-
Bterest in recent years because of the extra medium pa-
rameters, which offer a better possibility to modify different
structures that uvsually contain only dielectric or magnetic
media. The BI medium can be characterized by four scalar
medium parameters €, u, £, and ¢, relating the quantities of the
electromagnetic field through the following type of constitutive
relations:

D=¢cE+H B=yH+(E (1)

where

£ = (x — jr)Veoto (= (x+jr)Veomo (2

The permittivity w, permeability ;. are assumed independent of
frequency, whereas the chirality « is inherently connected with
2 and its effect vanishes at zero frequency. The additional pa-
rameter Y describes the magneto-electric effect, which causes
nonreciprocity of the medium.

In the present article, the method of partial images intro-
duced by Silvester [1], is generalized for BI media and applied
to find Green’s functions for point and line sources in BI
microstrip geometry. The static image method for BI media
was introduced by Lindell for plane parallel interfaces [2]
and followed by a generalization for cylindrical interfaces [3].
The same author has also developed an image theory for the
bi-isotropic sphere [4].

The microstrip is a popular form of inhomogeneous two-
conductor transmission line used in many of today’s mi-
crowave applications. The theory of quasi-TEM modes in
multidielectric microstrip structure was originally discussed by
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dos Santos and Figanier [5] and generalized for multiconductor
lines by Lindell [6]. The method is based on the expansion
of the propagation factor as well as the field components
in power series of . The quasi-TEM mode consists of
combinations of electrostatic and magnetostatic fields, related
by their boundary values, and longitudinal field components
that arise from the transverse fields. In this article, the quasi-
static solution of the microstrip is analyzed when the substrate
medium is assumed bi-isotropic. The capacitance and the
inductance of the structure per unit length are computed to
obtain the propagation factor and characteristic impedance.
The influence of the parameter x on the propagation factor,
phase velocity, and impedance are represented graphically for
different permittivities.

II. THEORY

A. Electrostatic Fields

Consider the problem of an electric and magnetic point
charge, ¢. and ¢,, with the same location r’. The fields which
the charges develop satisfy the static Maxwell equations,
written in the operational form

Vxe=0 V.d=0Qr-r') (3)
and the medium equations for the general BI medium

d = Me “

where the field and source quantities are represented by the

matrices
_(E _ (D (g
e_<H) d_(B> Q—(qm) &)

and the medium matrix M by

_(€ ¢
(i) e

Because the field matrix e is irrotational, we are free to
introduce the potential matrix

°=() ”

satisfying e = —V® and, because of (3) and (4), the Poisson
equation

MV2P = —Q6(r — 1) ®)
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where ¢, is the electric and ¢, the magnetic scalar potential.
The solution to (8) is of the form

1
d=—M" 9
D Q ®
with D being the distance between the source point r' and
the observation point r. Thus, the potentials due to an electric
point charge g. in BI medium can be written

¢

ge ¢, (10)
m

~ dn(c —&C/w)D

Let the point charge Q be located at 2z’ > 0 in medium M;
in front of a half space z < 0 of medium M. The reflection
and transmission images can be solved from two boundary
conditions [2]. Let the transmission and reflection images be
point charges Q; and Q, at the original source point z = 2’

Qbe ¢m =

and at the mirror image point z = —2’, respectively. The
incident, transmitted, and reflected potentials are
-1 -1 -1
g =2 g M I IS g
A D A Dy 47 D,

with the distance functions
Pt (z—2) Dp= P2+ (z+7)2 (12)

Continuity of the potential and the normal component of the
displacement vector d at z = 0 gives the equation pair

D:Dt:

MTTQ+ M Q= My Q, (13)
Q-0Q, =& (14)
from which the image sources
Qr = MyTMT'Q (15)
Q. = M;RM'Q (16)

can be solved. Here, T' and R denote the transmission and
reflection matrices respectively, which are

R=(M;+ M) Y My —M3)=—-T+T
T=2(M; + M2)~1M1

a7
(18)

It is remarkable that even if the original source would be only
an electric point charge, the images consist of both an electric
and a magnetic point charges, provided that at least one of the
medium matrices M7, Mo is nondiagonal (i.e. BI medium).

B. Magnetostatic Fields

Let us study the fields arising from static currents when free
charges are absent. Then the Maxwell equations read

Vxe:(_j]m)6(r—r’)zj5(r~r’) V-d=0 (19)
where J. and J,, are electric and magnetic currents. Express-
ing the displacement vector matrix d by means of the magnetic
vector potential matrix a:

d:an:Vx<Ae)

A (20)

and demanding that V - a = 0, gives us the Poisson equation
Via=-MJ6(r~1) 1)

which, when M is replaced by M™1, is similar to (8). It
turns out that the electrostatic and magnetostatic solutions,
including boundary conditions and image expressions, are
formally similar except for the replacement M + M~ and
Q — J everywhere. Obviously, since a is divergenceless, the
similarity applies only for two dimensional problems, e.g., for
straight line sources.

C. Green’s Functions for the Layered Geometry

Let us assume that the point source Q lies in medium M
(see Fig. 1) above the BI slab of medium M backed with a
medium M. The medium matrices can be written

_f[e O _fe & _fes O
M1_<S uo) M2“<C M) M‘“’”(S’ us)

(22)
From (17) the reflection matrices (15) for the electrostatic
potentials become

R23 = (Mz + M3)~1(M2 - MS)
1
T (st e)(us +p) - &C
y <<c — )+ 1a) — &

2038 )
(e+e3)(p—p3) —&C

2e3¢

(23)
Riz = (M1 + Ms) H{ My — M) = —Ry;
1
"~ (eo+ €)(po + p) — &
« <(60 —&)(po + p) + & —2p0€ )

—2¢0¢ (o + €)(po — 1) + £¢

(24)

From (18), the transmission matrices (16) are correspondingly

Tie = 2(My + Mz)_lMl

_ 2 (EO(MO +n) —po§ )
(eo + ){po + 1) — &C —e¢  poleo +€)
(25)
Top = 2(My + My) *My =21 — Ty, (26)
To3 = 2(./\/12 + Mg)_le =1+ Ros (27)

In the limit €3 — oo, pug — 0, corresponding to a PEC (perfect
electric conductor) backing, the matrices simplify into

1 0 0 0
RQ?’—}(%/M 1) ng“&(%/u 2)

When M3 = M, corresponding to air backing, Ras = R
and T23 = T21.

The reflection and transmission matrices in (23)—(27) are
calculated for single reflection and transmission at the inter-
faces. In order to get the total potentials at different regions
of the microstrip structure, the method of partial images given
by Silvester [1} and O’Neill [5] must be generalized for BI
medium interfaces. The locations of the image points remain

(28)
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Fig. 1. Construction of multiple images due to a point charge Q (electric
and magnetic point charge at the same location) in a layered structure. The
arrows in the figure on the top represent flux lines. Location of images for
the three regions are represented below.

the same as for isotropic media, but the scalar reflection and
transmission coefficients must be replaced by the matrices
(23)-27).

Let us examine the problem represented in Fig. 1, where the
thickness of the slab is d, and, taking the lower interface as the
zy-plane, the location of the source is 2’ > d. For the potential
in the upper medium z > d, we can write the amplitudes and
the locations for the original and image point charges as 2

Q 2
Qr = M1R12M1~1Q 2d — 7
Qo = M1 To1 RosT1oM; ' Q 2 (29)

Q,n = M1To1(Ra3Ra1)" RosTioM{'Q  —2nd — 2

Correspondingly, the potential in the BI layer can be obtained
from image point charges in half space z > d

Qi0 = MaT1aMTTQ 2
: (30)
Qi n = Ma(Ro1 Ro3)"T1aMT'Q  2nd + 2/
and image point charges in z < 0
Q.0 = MaRo3T1aM[1Q -z
: (31)

Qs n = Ma(Ro3Ro1 )" RogT1aMT1Q  —2nd — 2/
Image point charges for the potential valid in the region z <
0 are

Quo = MsTosTioMTQ 2
: (32)
Qun = M3To3(Ro1 Ro3)"T1aMT'Q  2nd + 2’
Applying the present partial image solution for the point
charge Q located above the slab, the electrostatic potentials

in all areas can be written by just summing the solutions for
the image point charges given in (29)-(32).

To be confident on the image solution, let us examine
expressions for the potential due to a point source located at
the upper interface, i.e. 2z’ — d. The complete set of potentials
in regions z > d, 0 < z < d, and z < 0 become

1T 2\ Ros N .
=l +1In nEZO ‘D—n‘(Rle%) TioM7-Q  (33)
1 | I Ras 1
Py = — == | (Ra1 Ro3)™ | T 34
2= - nEZO(Dm + Dn)( 21 f23)" [ T12 M7 Q (34)
By = T, fo: = (Ro1Ro3)™ | T1aMT1Q (35)

3= -1 2D, 21823)™ | T12M;

respectively, where

D=+p +(z—d)? D,=p2+(z+2n+1)d)?
Dy = V/p? + (2 = (20 + 1)d)?

Fig. 2 show an example of the potential curves corresponding
to an electric unit point charge located on the surface of a
BI slab of thickness d. These figures show clearly that the
potentials are continuous on the interfaces z = 0 and z = d,
which is also easily seen from expressions (33)—(35), where
Dy =Dpatz=0,and Dy = Dy and Do = D at
z = d. Also the continuity of the normal components of d at
both interfaces can be confirmed.
The electrostatic potential due to any charge distribution
can be expressed as
&(r) = / G(r, rYM7LQ(x)dV'. (36)
v
where V is the volume containing the source and G(r,1’) is
the Green’s function, satisfying
V2G(r,t') = -I6(r — 1) 37)
Comparing with expression (8), the solution for the potential
due to a point charge can be expressed as & = G(r,r )M Q.
Thus, Green’s functions are easily obtainable from the solution
for the potentials.
For z > d we have

I
Gi(r,r') =
1(r,1) Am/(p—p')2 + (2 = 2')?
N Ry
dm\/(p = /)2 + (2 + 2/ — 2d)?
+Z 21 232 21 23)/ 12 = (38)
2P Gt 7t 2
For 0 < z < d
1 X (Ra1R23)"T12
Gy(r,r') = —
+ (R23R23)nT12
V=02 + (& + 2 +2nd)? |
(39)
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Fig. 2. The electric potential ¢ and magnetic potential ¢, corresponding
to an electric unit point charge (1 As) on the surface of a BI slab with medium
parameters E, = 10, M, = 1, x = 0.1, K = 0, located between 0< z/d <1.
The medium on both sides of the slab is air. The curves are drawn with
different transverse distance p.

and for the lower half space 2z < 0

G, 1) = i To3(R21 Ro3)"T12
’ any/(p—p)? + (z — 2’ — 2nd)?

All the above Green’s functions are 2 X 2 matrices—the upper
row for the electric potential and the lower for the magnetic
potential.

(40)

D. Electric Line Sources

The electrostatic potential arising from a uniform infinite
line charge along the y axis can be obtained by integrating
the Green’s functions (38)—(40) and choosing a convenient
integration constant . In fact, every inverse distance function
can be replaced by a logarithm function in the following
manner:

1

V=07 + =27
It can be shown that the Green’s function for the magnetostatic

problem, involving a straight line current 7, is very similar
to (38)—(40) in the case of a line charge. The vector potential

— (@ — 2)? + (2 = #)?)

matrix a, which is parallel to the current 7, can be expressed
as
a(r) = / G' (e, )M J(')dV’ (41)
v
where the Green’s function G’ is the same as (38)-(40)

(written for a line charge). In this case, however, the reflection
and transmission matrices are

Rij = (M7 + M7HTH M = M5
Tij = 2(M7" + MY M?
by virtue of (21).

III. QUASI-STATIC SOLUTION FOR .BI MICROSTRIP

A. Quasi-TEM Fields

The quasi-static approximation is based on an asymptotic
series expansion of the field quantities in terms of w. The
quasi-TEM fields in transversely inhomogeneous transmission
lines are expressed as, [6]:

e(p,y) = [eo(z, 2) + jwei(z,2) + - - .]e—jﬂy

d(p,y) = [do(z, 2) + jwdi(z, 2) + ]eTIPY 42)

assuming that the field propagates in the y direction. The
propagation factor is also written in a series form, beginning
with ﬂ = wﬂl.

Insertion of (42) in the Maxwell equations gives us the
following set of zeroth-order equations:

Vxeg:(JO> Vdoz(g)

where the static electric current flows along the line J, = u,J
and p is the charge induced on the conductor surfaces.

Since the chirality parameter is of first-order « = wkq,
it does not affect dg. Equation (43) shows that eg and dg
are combinations of the electrostatic and magnetostatic two-
dimensional field solutions, which can be expressed by the
potentials as

(43)

Eq = —Vdo
1
Ho = ;VAO X uy +
2
L

B() = VA() X Uy

NG
X MOMO Voo

(44)

where A4, is the scalar part of the magnetic vector potential.
The boundary conditions on the conductors

7]
u, X Eg = —u, X V¢ =uyb—xq§0:0
u,-B=u, (VAO xuy) = %AO =0 45)

implies that ¢ and A are constant on both surfaces. Using
these conditions and the formulas (36) and (41), the charge and
current distributions in a given geometry can be computed.
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The corresponding set of first-order equations can be written

pHy +V x E1 = f1u, X Eg — x+y/eopo Eo (46)
—eEoV x H1 = Bruy x Ho + xv/coo Hy (47)

eV-Eq + X\/éouov ‘H; = k1 /eouoV - Hy (48)
VvV -Hi + xeouoV - Ey = —k1/eopoV - Eg 49)

The longitudinal components of the first order fields can
be determined from the curl equations, and the transversal
components from the divergence equations. In fact, inserting
the fields (44) in (44)-(46) yields

V x Eq =V x [uy(Bi1¢o — Ap)] (50)
VxH; = —V[(e— XE@E)QSO - ﬁAO}
Iz I
+ X V(- ) )
V-H; = m@v%o V-E; =0 (52)
from where the solutions
E; = uy, (810 — Ao) (53)

N7 /e
H = Iﬁl—li—uov% — %uy(/BIQSO — Ao) +u, Hi (54)

can be found. Here, the field Hj is not known explicitly, but
because it satisfies the equation

’ 2
VH = —u, x er _ %)% - %Ao] 55)

its values can be calculated numerically. Equation (54) shows
that the chirality gives rise to a transversal component for Hy,
which does not occur in the nonchiral case.

B. Circuit Quantities

To match the boundary condition u, x E = u,, x E¢ +
jwu, X Ej--- = 0 on conducting surfaces, the equation

Bigg — Ag =0

for the y component of E; (53) must be valid at both
conductors. This condition yields

Ag — Ay Vg
ﬁl = - =
d)a - (bb Uab
where U,, and W, respectively, are the voltage and the
magnetic flux between conductor a and b.
The divergence of (47) makes the left hand side vanish and
integrating a unit length of the volume including the sources
gives

(56)

(57)

[31/ V-(unyg)dV:—/ V.-DodV  (58)
) v o .V

& m [ 10w = [ dwav
v \
from which a second relation

(59

(b)

(©)

Fig. 3. (a) Cross-section of the original microstrip line. (b) Electrostatically
equivalent line: (¢) Model to form the Green’s function.

can be obtained. Defining the capacitance C and the inductance
L of the structure

\Ilab - LIa Qa = CUab (60)

and using (57) and (59), the propagation constant 3; can be
expressed as

/Bl — \Ijaan — \/fa

61
Uab[a ( )
and the characteristic impedance as
Uap L
et —_— 2
A A e (62)

IV. NUMERICAL EXAMPLES

The capacitance per unit length of the microstrip structure
is determined using a finite element solution method [1]. An
infinitely thin surface conductor of width w, extending from
1y = —o00 to 0o, lies on the plane z = d carrying a unit voltage,
whence the z = O plane is taken as zero voltage, Fig. 3(a). The
conductor is bounded by x = +w/2 and separated from the
PEC plane by a substrate of thickness d. One of the problems
is to solve for the electric charge density distribution induced
on the conductor surface.

Since the surface charge distribution is longitudinally uni-
form, it can be modeled by 2N line conductors along the y
direction in the z = d plane, each cartying a constant charge
density per unit length. Because the voltage of one strip is
determined not only by the prescribed charge, but also by the
charge that is induced by the other strips including itself, the
formulation of the problem yields an integral equation. The
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Green’s function can be developed in a similar manner as was
originally done by Silvester [1] for microstrips with dielectric
substrates. As indicated in Fig. 3, the following geometric
symmetry properties are exploited:

» The charge is symmetrically distributed in z-direction
with respect to the y-axis.

» The original microstrip structure is replaced by an electro-
statically equivalent structure, consisting of two conductor
strips separated by the substrate slab of thickness 2d
(Fig. 3(b)).

¢ Only the potential at the interface z = d is of interest.

After some algebra, we obtain the expression

o0

1
Glo,a') = - ) (Raa)" Tz

n=1
zn{ (v + (557 (02 + (34 }
((n =12+ (25)2) ((n = D + (345)?)
(63)

representing the potentials due to four electric line charges,
Fig. 3(c). By some change in notation (63) resembles that
obtained earlier by Silvester [1] in the case x = 0.

When the width of the k’th line charge is wg, the potential
can be written

L
Uy = G(z, s YM7ldzdx
= L[ G
= 11
N
4 = Zpk,qu' (64)
i=1

where the subindex 11 refers to the matrix element. The
electric charge per unit length on the jth strip is denoted by
g;. G is the Green’s function (63), which can be integrated
analytically to yield

1 > n—1 F’?»J
Prg = 2 ZRIZ T WrW; 6

n=1 7
where
Fp 5 = F(ug — lj,n) = Flug +1j,n) + F(ly + lj,n)
— F(ly = 1j,n) + F(lp — uj,n) — F(lp +uj,n)
+ F(ug + uj,n) — Fug — uj,m)
Flz,n) = %[xz ~ (2dn)?] In [(z/2d)” + 7]
+ 4dnz arctan(z/2dn)

0
By
WEWj

-1

Here, uyg,[;, are the upper and lower limits of the kth strip.
Setting the potential vector U to unity, we are able to solve for
the charge distribution by inversion of the p matrix. Finally,
the capacitance per unit length is obtained by

N N
C=2>"Y"(p""k;

k=1 j=1

(66)

- 6” (M + Mz)‘l} (65)
11 :

x107%s/m w/d =1
10+
b =1
o 2
] T~ 3
B Tl 4
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Fig. 4. Normalized propagation constant B; = B as a function of x for
different values of E. of the slab. The permittivity is M, in all space. Strip
width per substrate thickness, w/d, is 1 in the upper and 5 in the lower graph.
A subdivision of N = 30 has been used throughout these calculations.

Calculations show that the convergence of the series gets
slower for increasing x. It is also seen that in the limit
X — /& fir, the capacitance approaches zero. This limitation
coincide with the condition for positive energy density in the
BI medium [4].

The inductance is determined using a similar method as
described above for the capacitance. In this case, the integral
equation for the magnetic flux 1y, and the current I becomes

1
Y = Z =" /w 5 G’(x,x’)Mldxdw' I; (67)
j=1 k0
22
where G’ is basically the same Green’s function as (63), except
for the replacement M « AM~!. The inductance per unit
length is given by the formula
1

L=
EDSARD SN CED I
When the inductance -and capacitance are known, the nor-
malized propagation constant 3; = 3/w can be obtained from
(61). Fig. 4 illustrates 3; as a function of the parameter y for
different values of ¢, and for two different strip widths. In
Fig. 5, the solid lines illustrate the quasi-static approximation

(68)
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Fig. 5. Normalized phase velocity as a function of . Result of quasi-static
approximation (solid lines) and static approximation (dashed lines) for differ-
ent permittivities, when w/d = 1.
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* Fig. 6. Characteristic impedance for different strip widths and permittivities.
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for phase velocity v, = 1/3; in the microstrip (w/d = 1) as
a function of . For a comparison, the dashed lines represent
the approximation, which only takes into account the effect
of capacitance trough the formula v, = ¢,/Cy/C (i.e., static
approximation), where ¢ is the speed of light, and Cj the
capacitance when €, = 1 and x = 0. The results for the static
and quasi-static approximations are quite similar for small x
values but differ remarkably when x approaches /e, fi;.

The impedance Z is calculated from (62) for different
permittivities and strip widths as a function of y. Fig. 6 shows
that for some values of ¢,., the impedance remains almost
unchanged although x varies.

V. CONCLUSION

The method of partial images has been applied to evaluate
different kinds of Green’s functions for the microstrip structure

with a BI substrate. The magneto-electric coupling property
of fields in a Bl medium motivated the use of a compact
matrix formalism. A special kind of Green’s function was
developed and applied to the analysis of quasi-static solutions
in a microstrip line consisting of an infinitely thin conductor
attached on a BI substrate with a PEC backing. Because the
quasi-TEM mode is dominating when the wavelength is much
greater than the transverse dimensions of the waveguiding
structure, the asymptotic series expansion method was applied
for the analysis. The transversal zeroth order fields were
affected by the three parameters ¢, p and y whereas &
was absent because of the intrinsic frequency dependence of
chirality. On the other hand, the chirality was seen to give rise
to transversal magnetic field of the first order, in addition to the
usual longitudinal fields. To obtain the propagation constant,
the capacitance and inductance were calculated numerically
for a microstrip structure with different values of strip width
per substrate thickness as a function of .
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