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Abstract— A generalization of the partial image method, ap-

plicable for static planar-layered problems, is used to form

Green’s functions for the layered structure involving hi-isotropic
medium. The results are applied for the analysis of a microstrip

transmission line assumed to support the quasi-TEM mode. The
capacitance and inductance per unit length are calculated to

determine the propagation factor and impedance for the structure

composed of a conducting strip attached to a hi-isotropic slab
with conducting backkg.

Index Terms—Bi-isotropic medium, image method, quasi-static

approximation.

I. INTRODUCTION

B i-ISOTROPIC (BI) medium has attracted a growing in-

terest in recent years because of the extra medium pa-

rameters, which offer a better possibility to modify different

structures that usually contain only dielectric or magnetic

media. The BI medium can be characterized by four scalar

medium parameters e, ~, ~, and <, relating the quantities of the

electromagnetic field through the following type of constitutive

relations:

D=cE+fH B=pH+<E (1)

where

( “ (x –j~)AiG < = (x+jl’i)&iiG (2)

The permittivity w, permeability N are assumed independent of

frequency, whereas the chirality K is inherently connected with

fl and its effect vanishes at zero frequency. The additional pa-

rameter x describes the magneto-electric effect, which causes

nonreciprocity of the medium.

In the present article, the method of partial images intro-

duced by Silvester [1 ], is generalized for BI media and applied

to find Green’s functions for point and line sources in BI

microstrip geometry, The static image method for BI media

was introduced by Linden for plane parallel interfaces [2]

and followed by a generalization for cylindrical interfaces [3].

The same author has also developed an image theory for the

hi-isotropic sphere [4],
The microstrip is a popular form of inhomogeneous two-

conductor transmission line used in many of today’s mi-

crowave applications. The theory of quasi-TEM modes in

multidielectric microstrip structure was originally discussed by
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dos Santos and Figanier [5] and generalized for multiconductor

lines by Linden [6]. The method is based on the expansion

of the propagation factor as well as the field components

in power series of Q. The quasi-TEM mode consists of

combinations of electrostatic and magnetostatic fields, related

by their boundary values, and longitudinal field components

that arise from the transverse fields. In this article, the quasi-

static solution of the microstrip is analyzed when the substrate

medium is assumed hi-isotropic. The capacitance and the

inductance of the structure per unit length are computed to

obtain the propagation factor and characteristic impedance.

The influence of the parameter x on the propagation factor,

phase velocity, and impedance are represented graphically for

different permittivities.

II. THEORY

A. Electrostatic Fields

Consider the problem of an electric and magnetic point

charge, q, and q~ with the same location r’. The fields which

the charges develop satisfy the static Maxwell equations,

written in the operational form

Vxe=fl V.d=Q6(r–r’) (3)

and the medium equations for the general BI medium

d.Me (4)

where the field and source quantities are represented by the

matrices

‘=(:)‘=(3‘=(2) “)
and the medium matrix M by

()‘=;: (6)

Because the field matrix e is irrotational, we are free to

introduce the potential matrix

(0= ()4.
An

(7)

satisfying e = – V@ and, because of (3) and (4), the Poisson

equation

MV2@ = –C35(r – r’) (8)
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where ~, is the electric and ~~ the magnetic scalar potential.

The solution to (8) is of the form

+= &M-l Q (9)

with D being the distance between the source point r’ and

the observation point r. Thus, the potentials due to an electric

point charge q. in BI medium can be written

~,= qe
47r(e – ~(/w)D

& . s~e (lo)
P

Let the point charge Q be located at z’ >0 in medium Ml

in front of a half space z < 0 of medium M z. The reflection

and transmission images can be solved from two boundary

conditions [2]. Let the transmission and reflection images be

point charges Qt and Qr at the original source point z = z’

and at the mirror image point z = –z’, respectively. The

incident, transmitted, and reflected potentials are

with the distance functions

D = D, = ~p2 + (z – Z?)2 D, = ~p2 + (z+ Z’)2 (12)

Continuity of the potential and the normal component of the

displacement vector d at z = O gives the equation pair

M;l L?+ M;l LJ. = M;l LA (13)

Q–L?. =L?,

from which the image sources

L2t= M2TM;’Q

Q. = MIRM;l Q

can be solved. IIere, T and R denote the

reflection matrices respectively, which are

(14)

(15)

(16)

transmission and

R= (Ml +MJ1(M1 – M2) = –1+7’ (17)

T = 2(M1 +M2)-lMI (18)

It is remarkable that even if the original source would be only

an electric point charge, the images consist of both an electric

and a magnetic point charges, provided that at least one of the

medium matrices M 1, M z is nondiagonal (i.e. BI medium).

B. ki%gnetostatic Fields

Let us study the fields arising from static currents when free

charges are absent. Then the Maxwell equations read

()
Vxe= ‘~m 6(r – r’) = jti(r-r’) V.d=O (19)

e

where J, and J~ are electric and magnetic currents. Express-

ing the displacement vector matrix d by means of the magnetic

vector potential matrix a:

()
d= Vxa=Vx ;’ (20)

m

and demanding that V . a = O, gives us the Poisson equation

V2a = –M~6(r – r’) (21)

which, when M is replaced by M‘1, is similar to (8). It

turns out that the electrostatic and magnetostatic solutions.

including boundary conditions and image expressions, are

formally similar except for the replacement M + M‘1 and

Q -+ .7 everywhere. Obviously, since a is divergenceless, the
similarity applies only for two dimensional problems, e.g., for

straight line sources.

C. Green’s Functions for the Layered Geometry

Let us assume that the point source Q lies in medium M 1

(see Fig. 1) above the BI slab of medium M2 backed with a

medium M3. The medium matrices can be written

(22)

From (17) the reflection matrices (15) for the electrostatic

potentials become

R23 = (M2 + M3)-1(M2 – M3)

—
(Q+ E)(P:+ P) - K

(

x (c - ~3)(w+P3) -cc 2LL3~

2f3< (c+ c3)(/L - f13) - (< )
(23)

RU = (MI + M2)-l(M1 – Mz) = –R21

1
—

(60 + E)(vo + u) - ((

(

x (co - 6)(MO +W) +<( –2p,tg

–2&o( (q+ C)(po -~)+ &( )
(24)

From (18), the transmission matrices (16) are correspondingly

T12 = 2(M1 + MZ)-lM1

(25)

T21 = 2(MI + M2)”1M2 = 21 – T12 (26)

T23 = 2(M2 + M3)-1M2 = I+ R23 (27)

In the limit C3 - co, W3 ~ O, corresponding to a PEC (perfect
electric conductor) backing, the matrices simplify into

‘23+Go ‘234(4L9 ’28)
When Ms = M 1, corresponding to air backing, R23 = R21

and T23 = Tzl.

The reflection and transmission matrices in (23)–(27) are

calculated for single reflection and transmission at the inter-

faces. In order to get the total potentials at different regions

of the microstrip structure, the method of partial images given

by Silvester [1] and O’Neill [5] must be generalized for BI

medium interfaces. The locations of the image points remain
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Fig. 1. Construction of multiple images due to a point charge Q (electric

and magnetic point charge at the same location) in a layered structure. The
arrows in the fignre on the top represent flux lines. Location of images for

the three regions are represented below.

the same as for isotropic media, but the scalar reflection and

transmission coefficients must be replaced by the matrices

(23)-(27).

Let us examine the problem represented in Fig. 1, where the

thickness of the slab is d, and, taking the lower interface as the

xy-plane, the location of the source is z’ > d. For the potential

in the upper medium z > d, we can write the amplitudes and

the locations for the original and image point charges as 2

Q Z’

Q. = MIR12M;1Q 2d – z’

~r’,0 = M1T21R23T12M;1Q ‘z’ (29)

~r.,n = M11’21(R23R21)nR23T12MC1~ –Znd – ~

Correspondingly, the potential in the BI layer can be obtained

from image point charges in half space z > d

G?t,o= M21’12J4;1 Q z’

(30)

~t,rr = M2(R21R23)nT12M~1~ Znd + z’

and image point charges in .z < 0

Qs,O = M2R23T12M;~Q —z’

(31)

Q.,. = M2(R23R21)nR23T12 M~l~ –2nd –”

Image point charges for the potential valid in the region z <

0 are

Qu,O = M3T23T12M;1 Q z’

(32)

QrL,rI = ~3T23(R21R23)nT12 M;l Q 2nd + ~’

Applying the present partial image solution for the point

charge Q located above the slab, the electrostatic potentials

in all areas can be written by just summing the solutions for

the image point charges given in (29)–(32).

To be confident on the image solution, let us examine

expressions for the potential due to a point source located at

the upper interface, i.e. z’ -+ d. The complete set of potentials

in regions z > d, O < z < d, and z < 0 become

respectively, where

D = /p2 + (,z – d)z D. = /p2 + (z + (2n + l)d)2

Dt,~ = ~p2 + (z – (2n + l)d)2

Fig. 2 show an example of the potential curves corresponding

to an electric unit point charge located on the surface of a

BI slab of thickness d. These figures show clearly that the

potentials are continuous on the interfaces z = O and z = d,

which is also easily seen from expressions (33)–(35), where

Dt,n = D% at z = O, and Dt,n = Dn_l and Dt,o = D at

z = d. Also the continuity of the normal components of d at

both interfaces can be confirmed.

The electrostatic potential due to any charge distribution

can be expressed as

O(r) =
/

G(r, r’)M;l Q(r’)dV’ (36)
~

where V is the volume containing the source and G(r, r’) is

the Green’s function, satisfying

V2G(r, r’) = –16(r – r’) (37)

Comparing with expression (8), the solution for the potential

due to a point charge can be expressed as@ = G(r, r’)M;l Q.

Thus, Green’s functions are easily obtainable from the solution

for the potentials.

For z > d we have

I
Gl(r, r’) =

47r/(p – p’)z + (2 – Z’)2

R12
+

47r~(p – p’)2 + (z+ z’ – 2d)2
m

TzlRZs(RzlRzs)aTlz
+~ (38)

~=o 47r<(p – #)2 + (z+ z’ + 2nd)2

For O<.z<d

(39)
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Fig. 2. The electric potential ~e and magnetic potential& corresponding

toanelecttic unit point charge(l As)onthe surface ofa BIslabwithmedlum

parameters E, = 10, Alr = 1,x = 0.1, K = O, located between 0< z/d <1.
The medium on both sides of the slab is air. The curves are drawn w;th
different transverse distance p.

and for the lower half space z < 0

co
T23(R21&3)nT12

(40)G(r, r’) = ~ ~T/(p _ Ptp + (~ – Z’ – 2T@2
n=i)

All the above Green’s functions are 2 x 2 matrices-the upper

row for the electric potential and the lower for the magnetic

potential.

D. Electric Line Sources

The electrostatic potential arising from a uniform infinite

line charge along the y axis can be obtained by integrating

the Green’s functions (38)–(40) and choosing a convenient

integration constant k. In fact, every inverse distance function

can be replaced by a logarithm function in the following

manner:

1

{(p – p’)z + (z – Z’)2
~ –ln[k2((x – %’)2 + (2 – 2’)2)]

It can be shown that the Green’s function for the magnetostatic

problem, involving a straight line current a, is very similar

to (38)–(40) in the case of a line charge. The vector potential

matrix a, which is parallel to the current $, can be expressed

as

a(r) =
/

G’(r, r’)MIJ(r’)tW’ (41)
v

where the Green’s function G’ is the same as (38)–(40)

(written for a line charge). In this case, however, the reflection

and transmission matrices are

Rzj = (M;l +M;l)-l(M;l – A@)

Tij = 2(M;’1 + M;l)-lM;l

by virtue of (21).

III. QUASI-STATIC SOLUTION FOR BI MICROSTRIP

A. Quasi-TEM Fields

The quasi-static approximation is based on an asymptotic

series expansion of the field quantities in terms of w. ‘The

quasi-TEM fields in transversely inhomogeneous transmission

lines are expressed as, [6]:

4PjY)= [eO(~j ~) + .@l(r, Z)+.. .]e–ipy

d(p, y) = [do(z, z) + jwdl(x, z) + . . .]e-~py (42)

assuming that the field propagates in the y direction. The

propagation factor is also written in a series form, beginning

with ,B = w/31.

Insertion of (42) in the Maxwell equations gives us the

following set of zeroth-order equations:

()Vxeo =-j’ V.do=
():

(43)
e

where the static electric current flows along the line J. = UY1

and L?is the charge induced on the conductor surfaces.

Since the chirality parameter is of first-order ~ = ti>~l,

it does not affect do. Equation (43) shows that e. and do

are combinations of the electrostatic and magnetostatic two-

dimensional field solutions, which can be expressed by the

potentials as

EO =

Ho =

Do =

BO =

–V(pcl

h7A0 X Uy +
xJaiG

v#lJ
P

x@iiG

P VAOX”%*)V’”
VAO X UV (44)

where A. is the scalar part of the magnetic vector potential.

The boundary conditions on the conductors

8
Un x E. = –Uz X V@O =Uy~@O =0

un. B=uz. (VAoxuy)=:Ao= O (45)

implies that ~ and A. are constant on both surfaces. Using

these conditions and the formulas (36) and (41), the charge and

current distributions in a given geometry can be computed.
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The corresponding set of first-order equations can be written

pHo + V X El = ~lug X EII – X= EO (46)

–eEoV X HI = ~lttg X HO + X- HI) (47)

cV. E1+xeV. H1=ptlmV .Ho (48)

pV-H1+X&V. El = –K,l&V. EO (49)

The longitudinal components of the first order fields can

be determined from the curl equations, and the transversal

components from the divergence equations. In fact, inserting

the fields (44) in (44)–(46) yields

V x El = V X [Ug(/?I#O – AO)] (50)

‘XH’=-V[(’-*)’”-:AOI+x/zGG
UY x V(/31q50 – Ao) (51)

P

V .H1 = @%2~o V. E1=O (52)
P

from where the solutions

El = ug(~ldo – Ao) (53)

~, . .,mv~o - ‘mug(~l~o – Ao) + ug~{ (54)
P P

can be found. Here, the field HI is not known explicitly, but

because it satisfies the equation

‘H’=-U,XV[(’-%’)’”-?A”I‘5’)
its values can be calculated numerically. Equation (54) shows

that the chirality gives rise to a transversal component for HI,

which does not occur in the nonchiral case.

B. Circuit Quantities

To match the boundary condition u. x E = u. x E. +

juunx E1 . . . = O on conducting surfaces, the equation

D140 - Ao = O (56)

for the y component of El (53) must be valid at both

conductors. This condition yields

(57)

where U.b and ~.b, respectively, are the Vokage and the

magnetic flux between conductor a and b.

The divergence of (47) makes the left hand side vanish and

integrating a unit length of the volume including the sources

gives

(U, x Ho)dV — —

from which a second relation

la

(58)

(59)

&c13Po

I

(c) *X
—————-e—

}
-e—————— 4!

-cl -cl
Fig. 3. ~a) Cross-wction of the original micmstrip line. (b) Electrostatically
equivalent line. (c) Model to form the Green’s function.

can be obtained. Defining the capacitance C and the inductance

L of the structure

~ab = LI. Q. = CU.h (60)

and using (57) and (59), the propagation constant ,81 can be

expressed as

and the characteristic impedance as

IV. NUMERICAL EXAMPLES

(61)

(62)

The capacitance per unit length of the microstrip structure

is determined using a tinite element solution method [1]. An

infinitely thin surface conductor of width w, extending from
y = – ~ to ~, lies on the plane z = d carrying a unit voltage,

whence the z = Oplane is taken as zero voltage, Fig. 3(a). The

conductor is bounded by x = &w/2 and separated from the

PEC plane by a substrate of thickness d. One of the problems

is to solve for the electric charge density distribution induced

on the conductor surface.

Since the surface charge distribution is longitudinally uni-

form, it can be modeled by 2N line conductors along the y

direction in the z = d plane, each carrying a constant charge

density per unit length. Because the voltage of one strip is

determined not only by the prescribed charge, but also by the

charge that is induced by the other strips including itself, the

formulation of the problem yields an integral equation. The
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Green’s function can be developed in a similar manner as was

originally done by Silvester [1] for microstrips with dielectric

substrates. As indicated in Fig. 3, the following geometric

symmetry properties are exploited:

● The charge is symmetrically distributed in z-direction

with respect to the y-axis.

● The original micro strip structure is replaced by an electro-

statically equivalent structure, consisting of two conductor

strips separated by the substrate slab of thickness 2d

(Fig. 3(b)).

● Only the potential at the interface z = d is of interest.

After some algebra, we obtain the expression

in

{

(n, + (m+=)2) (nz + (*)2)
((n - 1)2 + (*)2) ((n - 1)2+ (*)2) }

(63)

representing the potentials due to four electric line charges,

Fig. 3(c). By some change in notation (63) resembles that

obtained earlier by Silvester [1] in the case x = O.

When the width of the k’th line charge is w~, the potential

can be written
.

N

qj = ~Pk,j% (64)

j=l

where the subindex 11 refers to the matrix element. The

electric charge per unit length on the jth strip is denoted by

qj. G is the Green’s function (63), which can be integrated

analytically to yield

P,j=;{[~R;;lTI[%-6]

-’[*-611(M’+M2)-1}11(6’)
where

F~j = F(w –ij, n) – F(w +lj, n) +F(l~ +Zj, n)

– F(/k–z.j,7t)+$’(lk –uj, n) –F(ik+uj, n)

+ I’(w + uj, n) – I’(w – uj,”n)

F(z, n) = ~[~2 - (2dn)2] in [(z/2d)2 + n2]

+ 4dnz arctan(z/2dn)

Here, U,, 1~ are the upper and lower limits of the kth strip.

Setting the potential vector U to unity, we are able to solve for

the charge distribution by inversion of the p matrix. Finally,

the capacitance per unit length is obtained by

k=l j=l

(66)

:+—I’’’’’’’’’I’’’’I’ !’’t’’l’’””
1.0 1.5 2.0 2.5 3;

x

xlo-gs/rn Vvld = 5
lo~

r——._-.-.8 ‘ --------... < ‘..

. \ \
‘.

.
.

\

‘. . .

oA–l’ill!’’l’l’’’l’l’ -
0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

Fig. 4. Normalized propagation constant I?l = B as a function of x for

different values of E, of the slab. The pennittivity is l% in all space. Strip

width per substrate tilckness, w/d, is 1 in the upper and 5 in the lower graph.
A subdivision of N = 30 has been used throughout these calculations.

Calculations show that the convergence of the series gets

slower for increasing X. It is also seen that in the limit

x ~ w, the capacitance approaches zero. This limitation

coincide with the condition for positive energy density in the

BI medium [4].

The inductance is determined using a similar method as

described above for the capacitance. In this case, the integral

equation for the magnetic flux ~, and the current 1 becomes

where G’ is basically the same Green’s function as (63), except

for the replacement M ~ M-1. The inductance per unit

length is given by the formula

L=–
1

( ‘-’)k,j2 Xfl=l Zy=l P
(68)

When the inductance and capacitance are known, the nor-

malized propagation constant ~1 = ~/w can be obtained from

(61). Fig. 4 illustrates /?1 as a function of the parameter x for

different values of e. and for two different strip widths. In

Fig. 5, the solid lines illustrate the quasi-static approximation
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Fig. 5. Normalized phase velocity as a function of X. Result of quasi-static

aPPro~imation (solid lines) md static approximation (dashed lines) for differ-
ent perrnittivities, when w/d = 1.

Q

i /

~) —Cr=l
150 wid= 1

1:

Fig. 6. Characteristic impedance for different strip widths and pennittivities.

for phase velocity VP = 1/~1 in the microstrip (w/cl = 1) as

a function of z. For a comparison, the dashed lines represent

the approximation, which only takes into account the effect

of capacitance trough the formula VP = c~~ (i.e., static

approximation), where c is the speed of light, and Co the

capacitance when Er = 1 and x = O. The results for the static

and quasi-static approximations are quite similar for small x

values but differ remarkably when x approaches -.

The impedance Z is calculated from (62) for different

permittivities and strip widths as a function of x. Fig. 6 shows

that for some values of CT, the impedance remains almost

unchanged although x varies.

V. CONCLUSION

The method of partial images has been applied to evaluate

different kinds of Green’s functions for the microstrip structure

with a BI substrate. Tlhe magneto-electric coupling property

of fields in a BI medium motivated the use of a compact

matrix formalism. A special kind of Green’s function was

developed and applied to the analysis of quasi-static solutions

in a microstrip line consisting of an infinitely thin conductor

attached on a BI substrate with a PEC backing. Because. the

quasi-TEM mode is dominating when the wavelength is much

greater than the transverse dimensions of the waveguiding

structure, the asymptotic series expansion method was applied

for the analysis. The transversal zeroth order fields were

affected by the three parameters ~, ~ and x whereas K

was absent because of the intrinsic frequency dependence of

chirality. On the other bland, the chirality was seen to give rise

to transversal magnetic field of the first order, in addition tcl the

usual longitudinal fields. To obtain the propagation constant,

the capacitance and inductance were calculated numerically

for a microstrip structure with different values of strip width

per substrate thickness as a function of X.
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